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a b s t r a c t

Stereoscopic/3D image and video quality assessment (IQA/VQA) has become increasing

relevant in today’s world, owing to the amount of attention that has recently been

focused on 3D/stereoscopic cinema, television, gaming, and mobile video. Understanding

the quality of experience of human viewers as they watch 3D videos is a complex and

multi-disciplinary problem. Toward this end we offer a holistic assessment of the issues

that are encountered, survey the progress that has been made towards addressing these

issues, discuss ongoing efforts to resolve them, and point up the future challenges that

need to be focused on. Important tools in the study of the quality of 3D visual signals are

databases of 3D image and video sets, distorted versions of these signals and the results

of large-scale studies of human opinions of their quality. We explain the construction

of one such tool, the LIVE 3D IQA database, which is the first publicly available 3D

IQA database that incorporates ‘true’ depth information along with stereoscopic pairs

and human opinion scores. We describe the creation of the database and analyze the

performance of a variety of 2D and 3D quality models using the new database. The

database as well as the algorithms evaluated are available for researchers in the field to

use in order to enable objective comparisons of future algorithms. Finally, we broadly

summarize the field of 3D QA focusing on key unresolved problems including stereo-

scopic distortions, 3D masking, and algorithm development.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction, definitions and previous work

1.1. Introduction

The field of automatic quality assessment (QA) of 2D
images and videos has seen tremendous activity in the
past decade, with many successful algorithms being pro-
posed [1–5]. The topic of QA of 3D images however, remains
relatively un-explored. This is partially because until recently,
commercially available 3D presentations were difficult to
view (think red–green glasses) and were often synonymous
with headaches and nausea, making their acceptance diffi-
cult. However, greatly improved capture and display tech-
nologies, along with tremendously successful commercial
cinematic releases have put 3D back on the map. For
example, in 2010, the total number of 3D movies that

reached the silver screen was estimated to be thrice the
number released in 2007 [6]. Apart from movies on the
big screen, there is a glut of non-cinematic 3D content
that is making its way to the consumer, especially over
wireless networks such as 3D on mobile devices [7], 3D
TVs, IPTV and 3D broadcast (e.g., ESPN 3D, Sony, Imax,
Discovery, etc.). Further, given the expected future growth
of video on mobile devices (as much as 50� over the next
few years [8]), and mobile devices capable of producing
and displaying stereoscopic content (for example the
recently launched HTC EVO 3D [9]), non-cinematic 3D is
becoming increasingly relevant. As Intel CEO P. Otellini
stated at the 2010 Consumer Electronics Show (CES)—‘‘3D
. . . is the next thing that’s poised to explode in the home’’.

Commercially at least, 3D content has begun to perme-
ate everyday life. Unfortunately, 3D movies are not uni-
versally loved, indeed, many critics and artists have
labeled 3D as unwatchable, predicting its eventual death
[10,11]. The major reasons for this attitude include reports
of 3D movies inducing nausea and headaches, distortions

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/image

Signal Processing: Image Communication

0923-5965/$ - see front matter & 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.image.2012.08.004

n Corresponding author.

E-mail address: anushmoorthy@gmail.com (A.K. Moorthy).

Signal Processing: Image Communication 28 (2013) 870–883



Author's personal copy

[7], poor quality ‘post-production’ 3D, perceived ‘dimness’
[10,11] and so on.1 Thus, even though 3D images seem
to have a buzz around them today, our understanding of
the many aspects of the 3D quality of experience is still
lacking.

In the immersive 3D realm, the term ‘quality of experi-
ence’ is used to capture the wide gamut of factors
that contribute to the overall palatability of the 3D visual
signal. We will touch upon these factors, but our focus
will be on 3D image quality assessment (IQA), or automatic
measurement of the quality of distorted images relative to
human subjective opinions of visual quality. While quality
of experience is of interest, the growing non-cinematic
nature of stereoscopic presentations implies that humans
will view increasing amounts of compressed 3D streams
that are transmitted over lossy networks such as IP or
wireless [8]. The presence of distortions in stereoscopic
content, either owing to the compression employed, or the
transmission loss, will definitely degrade the viewing
experience, and it is of immediate importance to under-
stand how such degradations affect the palatability of the
presentation. In addition, as vision scientists, we subscribe
to the notion that when there are multiple complex factors
(in this case, stereography, 3D display, geometry, and
distortions) contributing to a perception problem (in this
case, 3D QoE), all very poorly understood, it is best to
attempt to isolate and study each factor before proceeding
towards formulating an explanatory theory of the overall
problem. In the study reported here, we focus on the
perception of quality as it is affected by the image distor-
tion, setting aside issues such as camera placement, and 3D
display considerations.

Historically, QA algorithms are generally classified as
(1) full-reference (FR), (2) reduced-reference (RR), and
(3) no-reference (NR) algorithms. FR algorithms predict
the quality of a distorted visual signal given the original
reference signal. RR algorithms perform quality assess-
ment on the distorted signal, given incomplete knowledge
of the original reference signal. Finally, NR algorithms
are required to gauge the quality of the distorted signal
without any additional information about the reference.

Although these terms can be used when discussing 3D
images, the definitions do not apply in quite the same
way. This is because it is not possible to obtain access to
either an original 3D signal as it is perceived or a distorted
3D signal as it is perceived! This follows since, while we
can only access the left and right views of the scene (and
possibly a depth/disparity map that has been indepen-
dently computed or measured), we cannot access the 3D
visuo-sensory experience – the cyclopean image – that the
human re-creates in his/her brain. This is true for both
‘original’ and impaired cyclopean images and hence the
problem is double blind.

Thus, the field of algorithmically assessing the 3D
quality of experience and/or 3D quality is an extremely
challenging one, making it a fertile ground for research.

The complexity of the problem, coupled with our yet nascent
understanding of 3D perception and of the increasing
commercial shift toward 3D entertainment makes the
area of 3D QA interesting, formidable and practically
relevant. In the recent past, researchers have attempted
to develop algorithms that are capable of predicting not
only 3D quality but also 3D quality of experience. In order
to develop successful 3D IQA algorithms, it is imperative
to understand the human perception of 3D quality [15].
Here, we describe our recent efforts in creating a large-
scale publicly available dataset of 3D reference and
distorted images along with human/subjective opinion
scores of the quality of these images.

The new LIVE 3D IQA database consists of left–right stereo
image pairs accompanied by co-registered precision depth
maps measured by a LIDAR-based range scanner, yielding
valuable ground truth depth information. Since true depth is
available, we envision that these images and range scans will
be uniquely useful for 3D quality assessment studies, as well
as for the development and benchmarking of 3D stereo vision
estimation algorithms; supplementing the limited and dated
Middlebury stereo database [16],2 and for a variety of 3D
vision science inquiries, such as studies of the statistics of
stereoscopic images and distances in the real world [17,18].
Previous approaches to 3D QA have involved simple exten-
sions of 2D QA along with some additional quality informa-
tion gleaned from computed depth maps. As these depth/
disparity maps are computed using an algorithm, their
contribution to 3D QA is suspect, since algorithmic computa-
tion of disparity is still an open area of research. In order to
ensure that 3D QA algorithms are not crippled by the
approach adopted for disparity computation, this dataset
provides the necessary tools for algorithm development, by
not only providing high precision human opinion scores, but
also true depth information from a range scanner.

Through the rest of this paper we summarize other
such 3D quality assessment databases which have been
used in the recent past to gauge the performance of 3D QA
algorithms. We then describe in detail the LIVE 3D IQA
database including capture, distortion simulation, subjec-
tive study and performance evaluation of 2D and 3D
quality assessment algorithms. In the final segment, we
attempt to foretell the future of visual quality assessment
of 3D signals. We describe our own efforts at creating
objective/algorithmic 3D quality assessment algorithms
and explain a sample framework for FR 3D QA using a
perceptual model. We describe research efforts that we
believe are important in understanding 3D quality and
hypothesize about possible future work in this area.

1.2. A primer on stereo creation and perception

Before we begin, however, it may be prudent to go
through a quick primer on stereoscopic content creation
and perception. Two calibrated cameras separated by a fixed
distance are mounted on a rig and the pair of signals so
acquired are referred to as a stereoscopic pair. As illustrated

1 Not to mention the 4–10% of people that exhibit some degree of

stereo deficiency, and hence do not fully appreciate stereo presentations

[12–14].

2 Too small to be statistically significant, and acquired using a much

less precise range acquisition technology.
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in Fig. 1, the camera arrangement could be parallel baseline,
i.e., the (lens) axes of the two cameras are parallel to each
other, or a toe-in configuration in which the (lens) axes
intersect.3 In the study to be described, we opted to utilize
a parallel optical axis camera geometry as the simples and
most practical nominal assumption. Going forward, a 3D
quality database that includes stereo pairs acquired under
vergent conditions would be of great interest (for a very
broad variety of vision studies, in fact), but this would require
a deep stereographic study to select fixation and would
probably preclude ground-truth acquisition. Such a database

would be invaluable for understanding the effects of
geometry on the physiology and psychology of stereoscopic
viewing—important considerations towards optimizing
viewer comfort.

Let us now turn to the display of 3D images. In order to
create the perception of a 3D experience, the left–right
pair is displayed such that the left image is seen only by
the left eye, and the right image is seen only by the right.
This is generally accomplished by using polarizing filters
for each of the two projections such that each polarizer
is orthogonal to the other.4 This, coupled with matched
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Fig. 1. Camera geometry to capture stereoscopic content: (a) parallel base-line configuration and (b) toe-in configuration.

3 Note that the choice of the baseline separation could be a function

of the scene being imaged and the associated comfort when projected

onto a 3D display. While an analysis of this is beyond the scope of this

article, the interested reader is directed to [19,20].

4 Recall that this was once done almost exclusively using two

different color (red–green) images overlaid (called an anaglyph) and

red–green glasses so that one image fell on each eye.
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polarized glasses creates a 3D perception. Since the
polarizers are not perfect, some amount of the left image
‘leaks’ into the right and vice versa, leading to ‘cross-talk’.
Recently, active stereoscopic rendering, which greatly
reduces crosstalk, has gained commercial acceptance.
With this technology, the left and right images are flashed
on the screen one after the other, and the appropriate eye
is ‘shut-off’ by the glasses. Another, still evolving category
called autostereoscopic displays, do not require any
glasses at all, and consist of lenticular lenses or parallax
barriers which redirect the image to different viewing
regions [21]. The types of polarization (linear vs. circular)
and the advantages and disadvantages of active vs.
passive displays and the problems with autostereoscopic
displays are discussed in detail in [21,22]. In our study, we
used a polarized display and the stereoscopic images were
captured using a parallel baseline setup. Our desire to
capture ground truth data associated with the acquired
stereo-pairs limited this work to studying the subjective
quality of static stereo images only (an unsolved problem,
in any case). While capturing ground truth temporal
stereo data is feasible, it is not possible to capture it at
high spatial resolutions as we have done here.

1.3. Previous work

There exist some databases that have previously been
used to evaluate 3D quality and below we summarize
them. We note that none of these databases include ‘‘true-
depth’’ information from range-scanners.

The authors of [23] conducted two experiments to
gauge visual quality on mobile stereoscopic devices. In
the first, a single stimulus study,5 the participants rated
the quality of experience on a discrete unlabeled scale
from 0 to 10 as well as the quality for viewing mobile 3D
TV on a binary (yes/no) scale. In the first experiment, each
evaluation was conducted in two different contexts, while
in the second there were three different contexts.6 The
signals were encoded using a variety of video bit-rate/
frame-rate/audio bit-rate combinations using the H.264
codec. Their results indicate that, even at high bit-rates,
preference for 3D signals is below the level of 2D signals.
The authors also analyzed verbal descriptions obtained from
those that participated; various factors, such as ghosting, the

need to focus, unpleasantness, and unease in viewing, were
used to describe the 3D experience.

Other researchers have used databases to evaluate
their algorithm performance and some of these databases
have been made available for public use. In Table 1, we
list these databases, the distortions considered and the
number of images in each as well as their availability. In
cases where the availability was unclear, we contacted
the authors, where no replies were forthcoming, we
categorized the database as unavailable for public use. A
database has limited value unless it is made publicly
available so that other researchers can make comparisons.

The LIVE 3D IQA database incorporates symmetric
distortions and spans a wider gamut of distortions as
compared to those listed in Table 1. Further, apart from
DMOS, the database also provides researchers access with
‘true’ depth information obtained from a range scanner,
which all of the above databases lack. Finally, the LIVE 3D
IQA database is available freely for research purposes, so
that objective comparison of algorithms can be undertaken.

2. LIVE 3D image quality assessment database

2.1. Database creation

Conducting a human study on the quality of displayed
visual signals is a complex, multi-faceted task—especially
when the signals represent 3D information. Recently,
we conducted such a study as a service to the 3D QA
community of researchers. It is always desirable to have
available a diverse set of databases across which algo-
rithmic performance may be analyzed. Here we describe
how we went about creating this first phase of the LIVE
3D IQA database (future studies are planned).

2.1.1. Data acquisition

The image and range data used in this study were
collected using an advanced terrestrial range scanner, the
RIEGL VZ-400, with a co-registered 12.1 megapixel Nikon
D700 digital camera mounted on top of it [27] (see Fig. 2).
The RIEGL VZ-400 allows for a maximum scan angle range
of 1001(þ601/�401), with a minimum angle step-width
of 0.00241. Scan speeds up to 120 lines/s can be achieved,
with an angle measurement resolution of better than
0.00051 and a maximum measurement range of up to
500 m. The ‘‘ground truth’’ precision range data that we
acquire in this way is a unique feature of the LIVE 3D IQA
database.

The range scanner and the camera assembly was
mounted on a specially designed stereoscopic plate that
we constructed, which allowed for lateral displacement
of the assembly. The stereoscopic plate is equipped with

Table 1
Databases used by various researchers and their properties.

Database Distortions # of ref. # of dist. # of subjects Public

Toyoma [24] Symmetric/Asymmetric JPEG compression 10 490 24 No

Ningbo [25] JPEG, JPEG2000, Gaussian Blur and white noise (right only, left pristine) 10 400 20 No

IRCCyN/IVC [26] JPEG/JPEG2000 compressed images, Blur 6 90 17 Yes

5 Meaning one image is shown to the subject at a time, as opposed

to when images are shown in relation to the reference, such as a side-by-

side pairwise; these are referred to as ‘‘double stimulus’’ comparisons.
6 Context of use comprises of user characteristics, tasks, as well as

technical, physical and social environments. Here they consisted of

different environments such as a laboratory, home viewing, on the

bus, and on a station.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883 873
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a digital vernier scale in order to accurately measure
lateral displacement. To acquire each stereoscopic image
pair, an image-range map pair was first acquired at
vernier reading 0 mm; the assembly was then displaced
by � 65 mm (adult inter-ocular distance) and another
image-range map was then acquired. We note that while
parallel baseline configurations for 3D acquisitions are
acceptable, researchers are still trying to understand how
to optimally capture stereoscopic content given the scene
content, in order to minimize fatigue, discomfort, head-
ache and other negative factors induced by improper
geometry or stereography [19,20,28].

The two images form the stereoscopic pair, and the
two range maps yield precision depth information of
the scene being imaged. Having two range maps is quite
useful, since occlusions and measurement errors in the
range data may be corrected with the additional informa-
tion. Manual calibration was performed prior to acquisi-
tion using the RIEGL RiScan Pro software [29], and the 3D
point cloud and the 2D images were processed to obtain a
stereoscopic pair (left–right) of high quality JPEG images

at a resolution of 640�360, along with two range maps of
resolution 640� 360 for each scene. The procedure is
described below (Fig. 3).

The acquired range data was exported from the range
scanner as a point cloud with the three-dimensional
coordinate and the range value, while the image data
was stored in the digital camera as (high quality) JPEG
files. Finally, to obtain the aligned 2D range map with
the 2D image, the 3D point clouds were projected and
transformed into the 2D range map by applying the
pinhole camera model with lens distortion [30,31].

First, the three-dimensional coordinates of the point
clouds were converted into the undistorted two-dimensional
pixel coordinates

x

y

z

2
64
3
75¼A � RT �

X

Y

Z

1

2
6664

3
7775 ð1Þ

A¼

f x 0 cx

0 f y cy

0 0 1

2
64

3
75 ð2Þ

RT¼

r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

2
64

3
75 ð3Þ

u

v

� �
¼

x=z

y=z

" #
ð4Þ

where ½X Y Z�T is the three-dimensional coordinate of the
point cloud, A is the camera’s intrinsic matrix, RT is the joint
rotation-translation matrix, and ½u v�T is the undistorted two-
dimensional pixel coordinate.

In the intrinsic matrix A, ½cx cy�
T is the coordinate of

the principal point, which is usually at the image center,
and ðf x,f yÞ are the focal lengths along the x- and y-axes, all
expressed in the unit of pixels.

The parameters in the joint rotation-translation matrix
RT were computed from the manual calibration after
mounting the digital camera onto the range scanner.

Since real lens usually have distortions, viz. radial and
tangential, the distorted two-dimensional pixel coordi-
nates were computed by transforming the undistorted
two-dimensional pixel coordinates as follows:

ud ¼ uþu0f xðk1r2þk2r4þk3r6þk4r8Þ

þ2f xu0v0p1þp2f xðr
2þ2u02Þ ð5Þ

vd ¼ vþv0f yðk1r2þk2r4þk3r6þk4r8Þ

þ2f yu0v0p2þp1f yðr
2þ2v02Þ ð6Þ

u0 ¼ ðu�cxÞ=f x ð7Þ

v0 ¼ ðv�cyÞ=f y ð8Þ

r ¼ u02þv02 ð9Þ

where ½ud vd�
T is the distorted two-dimensional pixel

coordinate, ðk1,k2,k3,k4Þ are the radial distortion coefficients,
and ðp1,p2Þ are the tangential distortion coefficients.

Fig. 2. The RIEGL VZ-400 terrestrial range scanner and co-registered

Nikon D7 00 DSLR camera used to collect stereoscopic signals.

Fig. 3. A diagram representing the data acquisition flow.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883874
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After the distorted two-dimensional pixel coordinates
of each point cloud were computed, the aligned 2D range
map was obtained by filling the range value at each pixel
location with the one at the closest distorted two-
dimensional pixel coordinate. All scenes were imaged at
a resolution of 2823� 4256, and the range scanner set
with an angular precision of 0.04, since a higher scanning
resolution would lead to an increase in scanning time as
well as an increase in the probability of inconsistency
between the 3D point clouds and the corresponding 2D
image in natural scenes. In addition, since the digital
camera is mounted in portrait mode onto the range
scanner, the field of view for the 3D point clouds needs
to be adjusted to match the aspect ratio of the portrait
image, resulting in 601 and 1001 fields of views in the
horizontal and vertical direction respectively. As a result,
the resolution of the 3D point clouds from the range
scanner is 60

0:04�
100
0:04 ¼ 1500� 2500 (points), which is

smaller than the image resolution captured by the digital
camera. The range in depth that the scanner can measure
depends on the operation mode, the sunlight, the weather,
the targets’ reflectivity (material), etc. During our data
acquisition, we used the long-range mode, where the min.
range is 1.5 m and the max. range is 280–600 m, depend-
ing on the reflectivity. The data type ‘‘double’’ was used to
represent the ranges in MATLAB.

To provide accurately aligned 2D range maps and images
while keeping their resolution as high as possible, the 3D
point clouds were projected and transformed into a 2D range
map with a resolution of 708� 1064, while the original 2D

image was also down-sampled to the same size. Inaccurate
range values at boundary pixels in the natural scene were
removed by cropping the aligned 2D range map and 2D
image to a resolution of 640� 360, which is appropriate for
display and viewing using our setup. Although higher resolu-
tion display was possible, we decided that an intermediate
display size would be preferable given the proliferation of
large-format displays and the expected large-scale deploy-
ment of small format display devices. Finally, slight differ-
ences in contrast between the two views were resolved using
a simple histogram matching approach. Note that since
the image pairs were not captured at the same time, small
variations (due to leaves, dust, birds, etc.) may have occurred
between the two views. While the binocular compensation
reduces many of these variations, one cannot guarantee that
the two views demonstrate no variation. We have further
tried to reduce these variations by collecting a large sample
of images and pruning out those images which demonstrated
large variations. Care was also taken during the capture
process to image scenes at times when such variations would
be minimized (for example, on a non-windy day).

Thus, for each scene imaged, a stereoscopic pair (left–
right) of high quality JPEG images at a resolution of
640�360, and two 2D range maps of resolution 640� 360
were obtained.

All of the stereoscopic data were collected from out-
door scenes. Fig. 4 shows some examples of the natural
scenes that were obtained with the aligned 2D range map
and 2D images. The natural scenes where the image and
range data were collected include different parts of the

Fig. 4. Examples of the natural scenes, 2D images on the left and aligned 2D range maps on the right. Black regions indicate locations were range was not

obtainable.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883 875
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campus at The University of Texas at Austin, and the
Eastwoods Park nearby. In Fig. 5, we plot each of the 20
reference images (left view) that were acquired and used
in the subsequent study.

2.1.2. Distortion simulation

The distortions that we selected to use in this study
mirror those in the popular LIVE IQA database [32].
The distortions that were simulated include compression
using the JPEG and JPEG2000 compression standards,
additive white Gaussian noise, Gaussian blur and a fast-
fading model based on the Rayleigh fading channel.
Degradation in visual quality for each of these distortions
was achieved by varying a control parameter within a
particular range; all of which are tabulated in Table 2. As
an illustration, in Fig. 6, we show a stereoscopic pair of
images from the LIVE 3D IQA database that has been
distorted by fast-fading distortion; the reader is encour-
aged to free-fuse this pair in order to visualize how 2D
distortions can affect 3D percepts.7

JPEG compression was simulated using MATLAB’s JPEG
compression utility, while JPEG2000 (JP2K) compression
was simulated using the Kakadu encoder—the para-
meters varied were the ‘quality’ parameter and the bit-
rate, respectively. Additive white Gaussian noise (WN)
was simulated using the imnoise command in MATLAB,
where Gaussian noise was applied equally across the R, G
and B planes. Similarly, Gaussian blur was simulated by
applying a Gaussian low-pass filter to each of the color
planes. For both WN and Blur, the control parameter was
the variance of the Gaussian. Fast-fading (FF) distortion
consisted of a JP2K compressed image transmitted over a
Rayleigh fading channel, with the channel Signal-to-Noise
ratio (SNR) as the control parameter.

Since we are dealing with stereoscopic signals, distor-
tions may be applied asymmetrically or symmetrically.

Fig. 5. The 20 reference images used in the subjective study. Shown here are only the left-views.

Table 2
Range of parameter values for distortion simulation.

Distortion Control parameter Range

JP2K Bit-rate [0.05 3.15]

JPEG Quality parameter [10 50]

WN Variance of Gaussian [0.01 1]

Blur Variance of Gaussian [0.01 15]

FF Channel SNR [12 20]

7 For example, one of the subjects in our study (described in the

text) questioned the wisdom of adding noise ‘in-the-front’ while the

image was perfect ‘at-the-back’. This would imply that noise does not

destroy the depth-percept but still leads to some annoyance.

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883876
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The recent past has seen some research activity on
asymmetric compression of stereoscopic signals [33,34],
and asymmetric distortions and their effect on visual
quality remain an interesting avenue for research. How-
ever, in this study, all distortions are symmetric. Specifi-
cally, the left and right images from each stereoscopic pair
were distorted using the five different distortions above,
where the ‘amount’ of each distortion remains the same
for the left and right image.

A total of 20 reference images and 365 distorted
images (80 each for JP2K, JPEG, WN and FF; 45 for Blur)
were thus created and utilized for the subjective study.

2.2. Subjective study

A single-stimulus continuous quality evaluation
(SSCQE) with hidden reference study [2] was conducted
at the University of Texas at Austin (UT), over the course
of two weeks. The subject pool consisted of 32 (mostly
under-graduate) students from UT. The subjects were a
mix of males and females, with a male-majority and were
informally tested for stereo acuity. While a visual acuity
test was not performed, a verbal confirmation of the same
was obtained prior to the study. The study involved two
sessions of viewing, each lasting less than 30 min, in order
to minimize subject-fatigue [35]; the average testing time
was approximately 22 min. An informal after-study feed-
back conducted indicated that the subjects were able to
perceive stereoscopic signals well and that they did not
experience any uneasiness or fatigue during the course
of the study. Each image was displayed on the screen for
8 s. Each session began with a short training module in
which the subject saw six stereoscopic signals chosen to
span the range of distortions that the subject was about
to view. The signals used for training differed from those
in the actual study. The study consisted of the set of
images shown in random order. The order was rando-
mized for each subject as well as for each session. Care
was taken to ensure that two consecutive sequences did
not belong to the same reference, to minimize memory
effects [35]. Images were displayed on a 22 in. IZ3D
passive stereoscopic display with the screen resolution
set at 800�600.

The study design was such that each image received
ratings from 17 subjects, and the ratings that the subject
gave the distorted signal were subtracted from the rating
that the subject gave the corresponding reference signal to
form a differential opinion score (DOS). A subject rejection

procedure was then run as per recommendations [35] which
rejected two subjects. The remaining subjective scores were
then averaged across subjects to produce differential mean
opinion scores (DMOS).

At this juncture it may be prudent to discuss our study
design a bit further. Specifically, as independent vision
scientists working in academia, we find it to be scientifi-
cally judicious to depart from ‘‘standardized’’ procedures
at times such as those set forth by the ITU [35]. ITU
recommendations demand rigid screening and experi-
mental setups that are no longer relevant in this era
(e.g., they were designed to formalize studies of quality
assessment on CRT TVs, an environment where screen
sizes, expected viewing distances and overall environ-
ment varied much less than today’s variegated video
experiences). It is our opinion that standards should be
used to the extent for which they have been designed.
The topic of subject screening is a good example. While
psychometric studies ordinarily require great rigor in
subject screening (of acuity in 2D and 3D, of color sense,
and in this case, of stereo capability), unlike our non-QA
work, we are relaxing our subject screening, since image
display devices are being deployed in high diverse and
dynamic environments, and we think that subjects should
model the general populace as much as possible. In this
study, we only tested stereo blindness since we wished to
specifically explore the interplay between distortions and
perceived depths.

Another important consideration is the number of
participants in the study. There exist recommendations
on this as well, and some researchers have studied the
question of the maximum number of subjects to conduct
meaningful studies. While QA studies are typically large
(420 subjects), we believe that a more important metric
than subject count is the statistical confidence in the
study, even if fewer subjects are used. The scores from
the LIVE 3D IQA database, as we shall see, satisfy this
requirement.

The LIVE 3D IQA database consists of 20 reference
images, 5 distortion categories and a total of 365 distorted
images along with the associated DMOS. A histogram of
DMOS scores and a histogram of the standard errors is
shown in Fig. 7. We note that these standard deviations
are in line with previous studies of this nature for 2D
images and videos [2,36]. Further, the DMOS distribution
is uniform through a large portion of the scale indicating
that the distortions in the LIVE 3D IQA database span a
wide range of visual quality.

Fig. 6. Stereoscopic distorted pair from LIVE 3D IQA database. Free-fuse the left and right images to obtain a 3D percept.
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2.3. Algorithm performance evaluation

We evaluated the performance of a number of FR 3D
IQA algorithms on the LIVE 3D IQA dataset. These algo-
rithms were chosen based on their reported performance
and availability. Further, in order to provide a baseline
performance and to evaluate the efficacy of 2D algorithms
for predicting 3D visual quality, we also evaluated a set of
popular 2D FR IQA algorithms on the dataset. When using
a 2D IQA algorithm, the algorithm was applied on the left
and right images separately and the estimated quality
scores averaged to produce single measure of 3D quality.
In the case of 3D FR IQA algorithms, the algorithms were
applied as described in the cited references. The 2D IQA
algorithms used here are part of the MetrixMux toolbox,
available at [37]. For 3D QA algorithms, the respective
authors were contacted for code. We used the code
provided by the authors in [26] and coded all the other
algorithms ourselves in Matlab. The code for each of these
algorithms is available as part of the LIVE 3D IQA database,
which will be publicly accessible at the LIVE QA web site by
the time this article appears.

Tables 3 and 4 list the 2D and 3D IQA algorithms
evaluated in this study. To conserve space, we do not
describe the 2D algorithms here, so the reader is referred
to the cited literature.

The performance measures used are Spearman’s rank
ordered correlation coefficient (SROCC), the linear (Pear-
son’s) rank ordered correlation coefficient (LCC) and the
root-mean-squared error (RMSE) [32,3]. LCC and RMSE
were computed after logistic regression through a non-
linearity, as described in [32]. An SROCC and LCC value
close to 1 indicates good correlation with human percep-
tion, while lower values of RMSE indicate better perfor-
mance. Tables 5–7 list the performance of the various 2D
IQA algorithms. The results of 3D IQA algorithms are
listed in Tables 8–10.

We also performed a statistical significance analysis
using the t-test between the residuals in prediction
obtained from the non-linear regression process that
was used to compute the linear correlation coefficient
on the entire dataset [32,52]. The results are listed in

Table 12. The algorithms in [48,49,51,50] are statistically
worse than 2D PSNR, while that in [46] is statistically
equivalent to 2D PSNR. All the other algorithms are statisti-
cally superior to 2D PSNR. UQI [41], the best performing
algorithm on the dataset, is statistically superior to all
algorithms, except MS-SSIM and WSNR, which are statis-
tically equivalent to UQI.

The results in Table 5 differ from those for the same
algorithms when used for 2D quality assessment [36]. For
example, SSIM(MS) and VIF are top performers on the LIVE
IQA database, while the performance of UQI is far worse.
However, for 3D QA, UQI seems to outperform VIF and
SSIM(MS), although the latter have good performance.
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Fig. 7. Subjective study data from the LIVE 3D IQA database: (a) Histogram of DMOS scores and (b) Histogram of standard errors.

Table 3
List of FR 2D IQA algorithms evaluated in this study.

No. Algorithm

1. Peak Signal-to-Noise ratio (PSNR)

2. Structural Similarity Index (SSIM) [38]

3. Multi-scale Structural Similarity Index (SSIM (MS)) [39]

4. Visual Signal-to-Noise ratio (VSNR) [40]

5. Visual Information Fidelity (VIF) [36]

6. Universal Quality Index (UQI) [41]

7. Noise Quality Measure (NQM) [42]

8. Weighted Signal-to-Noise ratio (WSNR) [43]

9. C4 [44]

10. Blind Image Quality Index (BIQI) [45]

Table 4
List of 3D IQA algorithms evaluated in this study.

Italics indicates an NR (blind) algorithm.

No. Algorithm

1 Benoit [26]

2 Hewage [46]

3 You [47]

4 Gorley [33]

5 Shen [48]

6 Yang [49]

7 Zhu [50]

8 Akhter [51]

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883878
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Based on the results in Tables 5 and 8, it is clear that
for the set of distortions considered, the 2D IQA algo-
rithms perform well in terms of correlation with human
subjectivity, while the addition of disparity/depth in the
3D algorithms does not materially improve the perfor-
mance (in agreement with a previous study [26]). Yet, our
own experiences with distorted 3D images leads us
to believe that disparity activity (e.g., caused by rapid
changes in depth) may affect distortion visibility, viz., that
the experience of depths and depth variations may render
some distortions more or less visible [53]. Towards this
end, we designed a ‘‘laboratory-only’’ algorithm that
incorporates disparity activity computed from the ground
truth depth data in the LIVE 3D IQA database, whose
results we tabulate in Table 11. Of course, we could have
employed a stereo matching algorithm, but the necessary
characteristics and accuracy of such algorithms for this
problem remain open questions.

In the ‘‘laboratory-only’’ algorithm, the stereoscopic
pair is decomposed by a set of multi-scale oriented
complex Gabor filters (both the reference and distorted
image). The squared differences of left and right response
amplitudes are divisively normalized (similar to [54]). The
result is then also divisively normalized by ground-truth
disparity. In practice, of course, disparity could be esti-
mated from the stereo images. Table 8 shows these
results (labeled as Gabor energy – masking). The perfor-
mance of the model without any masking is also shown
(labeled as Gabor energy – no masking).

The result suggests that incorporating a luminance
masking model and a disparity masking model into the
Gabor energy algorithm improves the performance. Our
observations indicate that there is a definite interaction
between disparity and luminance and that disparity
activity may reduce luminance masking. This agrees with
a recent study on visual masking which suggests that
the presence of a target and a mask at different depths
activates two separate pools of neurons, thereby reducing
the masking ability of the target [55]. Our observations
are bolstered by the performance of the 2D UQI. UQI is a
preliminary version of the popular SSIM [41,38], and
while it does account for contrast masking using a divisive
normalization-based approach, SSIM incorporates a much
better model for contrast masking—thereby making SSIM
a better measure for 2D quality assessment. However,
such strong contrast masking may not reflect human
perception accurately when viewing 3D scenes [55].

Table 5
Performance of 2D IQA algorithms in predicting perceived 3D image

quality: Spearman’s Rank Ordered Correlation Coefficient (SROCC). Italics

indicates an NR (blind) algorithm.

Algorithm JP2K JPEG WN Blur FF All

PSNR 0.7967 0.1311 0.9318 0.9016 0.5957 0.8370

SSIM 0.8572 0.4346 0.9395 0.8822 0.5849 0.8772

SSIM (MS) 0.8975 0.6019 0.9439 0.9262 0.7316 0.9237

VSNR 0.8313 0.4062 0.9049 0.8306 0.7283 0.8817

VIF 0.9018 0.5828 0.9325 0.9312 0.8037 0.9204

UQI 0.9101 0.7371 0.9272 0.9238 0.8322 0.9381
NQM 0.8619 0.5399 0.9237 0.9058 0.7509 0.9103

WSNR 0.8997 0.6132 0.9369 0.9291 0.7604 0.9255

C4 0.9108 0.6365 0.9425 0.9361 0.8349 0.9144

BIQI 0.7727 0.4887 0.9277 0.8596 0.7067 0.8652

Table 6
Performance of 2D IQA algorithms in predicting perceived 3D image

quality: Linear Correlation Coefficient (LCC).

Algorithm JP2K JPEG WN Blur FF All

PSNR 0.7889 0.2311 0.9347 0.8937 0.7062 0.8251

SSIM 0.8650 0.4849 0.9374 0.9197 0.7212 0.8727

SSIM (MS) 0.9306 0.6712 0.9474 0.9461 0.8060 0.9302

VSNR 0.8898 0.4107 0.9111 0.8726 0.7867 0.8665

VIF 0.9361 0.6738 0.9273 0.9570 0.8542 0.9183

UQI 0.9512 0.7727 0.9273 0.9565 0.8788 0.9424
NQM 0.9159 0.5666 0.9252 0.9399 0.7878 0.9151

WSNR 0.9326 0.6763 0.9369 0.9443 0.8113 0.9260

C4 0.9378 0.6497 0.9359 0.9649 0.8754 0.9193

BIQI 0.8203 0.6136 0.9323 0.8995 0.7762 0.8792

Table 7
Performance of 2D IQA algorithms in predicting perceived 3D image

quality: Root Mean-Squared-Error (RMSE).

Algorithm JP2K JPEG WN Blur FF All

PSNR 7.9587 6.3624 5.9145 6.5271 8.7971 9.2678

SSIM 6.4984 5.7191 5.7947 5.6814 8.6069 8.0059

SSIM (MS) 4.7417 4.8473 5.3236 4.6887 7.3553 6.0187

VSNR 5.9097 5.9623 6.8588 7.0782 7.6714 8.1868

VIF 4.5570 4.8319 6.2291 4.1986 6.4615 6.4903

UQI 3.9983 4.1508 6.2261 4.2222 5.9297 5.4865
NQM 5.1974 5.3895 6.3124 4.9439 7.6530 6.6134

WSNR 4.6740 4.8167 5.8148 4.7651 7.2644 6.1902

C4 4.4951 4.9708 5.8615 3.8003 6.0067 6.4530

BIQI 7.4100 5.1636 6.0166 6.3238 7.8679 7.8119

Table 8
Performance of 3D IQA algorithms in predicting perceived 3D image quality: Spearman’s Rank Ordered Correlation Coefficient

(SROCC). Italics indicates an NR algorithm.

Algorithm JP2K JPEG WN Blur FF All

Benoit [26] 0.9103 0.6028 0.9292 0.9308 0.6989 0.8992
Hewage [46] 0.8558 0.5001 0.8963 0.6900 0.5447 0.8140

You [47] 0.8598 0.4388 0.9395 0.8822 0.5883 0.8789

Gorley [33] 0.4203 0.0152 0.7408 0.7498 0.3663 0.1419

Shen [48] 0.2133 0.2440 0.8917 0.6586 0.2665 0.0679

Yang [49] 0.1501 0.1328 0.8471 0.3266 0.1426 0.0785

Zhu [50] 0.7708 0.2929 0.4651 0.7935 0.4752 0.6388

Akhter [51] 0.8657 0.6754 0.9137 0.5549 0.6393 0.3827
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These and other such insights [56] are significant for
algorithm design and suggest that the simplistic approach
that most of the 3D algorithms take may not be sufficient
to predict perceptual quality.

3. Discussion and future work

Our analysis of algorithms in the area of 3D QA might
lead one to believe that 2D algorithms are sufficient to
gauge the perceptual quality of stereoscopic signals. It
may be prudent to discuss the implication of our findings
for research in 3D QA. The first thing to note is that almost
all of the 3D QA algorithms are simple extensions of 2D
QA algorithms with some additional ‘features’ extracted
from depth (generally disparity differences). The way in
which this disparity information is incorporated into
these 3D QA algorithms is not yet based on any perceptual
principles (such as disparity masking, which we do not
really understand yet). While these observations may
partially explain why the 3D QA algorithms are not
appreciably better than their 2D counterparts, it does
not explain why 2D algorithms do well on the LIVE 3D
IQA database.

Amongst the distortions that we consider in the
dataset, WN and Blur are global distortions and hence

are less likely to affect the perception of depth. Predic-
tably, 2D algorithms do extremely well in these two
categories. For those distortions that create localized
artifacts, however, 2D algorithm performance is below
par—especially for the local blocking/blurring types of
distortion caused by JPEG compression. This suggests a
possible answer to our question of 2D algorithm perfor-
mance. When assessing localized distortions that may
lead to depth irregularities, 2D algorithms do not do well.
Their performance is not bad however, and the reason for
this is that stereoscopic quality is a complex function of
monoscopic quality and irregularity in depth/disparity as
we have discussed before and demonstrated elsewhere
[53]. Since 2D algorithms account for the monoscopic
component, their performance is not abysmal. The poor
performance of 3D algorithms on these distortions is
likely explained by the simplistic design of these methods,
and our current poor understanding of how distortions affect
the 3D sensory experience, and in particular how disparity
and luminance perception interact. We are designing a series
of psychophysical experiments to better understand exactly
how luminance and disparity may mask one another (for an
example of one such study, the reader is referred to [53]).

Note that the distortions in the LIVE 3D IQA database are
not specifically stereoscopic. Some lead to stereoscopic errors

Table 9
Performance of 3D IQA algorithms in predicting perceived 3D image quality: Linear Correlation Coefficient (LCC). Italics indicates

an NR algorithm.

Algorithm JP2K JPEG WN Blur FF All

Benoit [26] 0.9398 0.6405 0.9253 0.9488 0.7472 0.9025
Hewage [46] 0.9043 0.5305 0.8955 0.7984 0.6698 0.8303

You [47] 0.8778 0.4874 0.9412 0.9198 0.7300 0.8814

Gorley [33] 0.4853 0.3124 0.7961 0.8527 0.3648 0.4511

Shen [48] 0.5039 0.3899 0.8988 0.6846 0.4830 0.5743

Yang [49] 0.2012 0.2738 0.8701 0.6261 0.2824 0.3909

Zhu [50] 0.8073 0.3790 0.5178 0.7770 0.5038 0.6263

Akhter [51] 0.9059 0.7294 0.9047 0.6177 0.6603 0.4270

Table 10
Performance of 3D IQA algorithms in predicting perceived 3D image quality: Root-mean-squared-error (RMSE). Italics indicates an

NR algorithm.

Algorithm JP2K JPEG WN Blur FF All

Benoit [26] 4.4266 5.0220 6.3076 4.5714 8.2578 7.0617
Hewage [46] 5.5300 5.5431 7.4056 8.7480 9.2263 9.1393

You [47] 6.2066 5.7097 5.6216 5.6798 8.4923 7.7463

Gorley [33] 11.3237 6.2119 10.1979 7.5622 11.5691 14.6350

Shen [48] 12.2754 6.0216 7.2939 10.5547 10.8820 13.5473

Yang [49] 12.6979 6.2894 8.2002 12.1291 11.9462 15.2481

Zhu [50] 7.6813 6.0684 14.7201 9.1270 10.7362 12.7828

Akhter [51] 5.4836 4.4736 7.0929 11.3872 9.3321 14.8274

Table 11
Performance of a ‘‘laboratory-only’’ algorithm in predicting perceived 3D image quality: Spearman’s Rank Ordered Correlation

Coefficient (SROCC).

Algorithm JP2K JPEG WN Blur FF All

Gabor energy—no disparity activity 0.8877 0.5102 0.9326 0.9352 0.6846 0.9163

Gabor energy—disparity masking 0.9013 0.6620 0.9445 0.9389 0.7389 0.9336

A.K. Moorthy et al. / Signal Processing: Image Communication 28 (2013) 870–883880
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Table 12
Results of a t-test for statistical significance between pairs of 2D and 3D algorithms considered here. A value of ‘1’ indicates that the row is superior to the column algorithm, while a ‘�1’ indicates that the row

is inferior statistically; a ‘0’ indicates that the row and column algorithms are statistically equal in the performance. Also listed in brackets is the associated p-value. A p-value of 0 is to be read as po0:001.

PSNR SSIM SSIM

(MS)

VNSR VIF UQI NQM WSNR C4 BIQI Benoit Hewage You Gorley Shen Yang Zhu Akhter

PSNR 0 (0.50) 1 (0.00) 1 (0.00) 1 (0.02) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.17) 1 (0.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

SSIM �1 (1.00) 0 (0.50) 1 (0.00) 0 (0.89) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.21) 1 (0.00) 1 (0.04) �1 (0.98) 0 (0.25) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

MS�SSIM �1 (1.00) �1 (1.00) 0 (0.50) �1 (1.00) 0 (0.88) 0 (0.15) 0 (0.90) 0 (0.71) �1 (1.00) �1 (0.96) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

VSNR �1 (0.98) 0 (0.11) 1 (0.00) 0 (0.50) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.02) 1 (0.00) 1 (0.00) 0 (0.83) 1 (0.03) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

VIF �1 (1.00) �1 (1.00) 0 (0.12) �1 (1.00) 0 (0.50) 1 (0.01) 0 (0.55) 0 (0.27) �1 (0.99) 0 (0.68) �1 (0.96) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

UQI �1 (1.00) �1 (1.00) 0 (0.85) �1 (1.00) �1 (0.99) 0 (0.50) �1 (0.99) 0 (0.95) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

NQM �1 (1.00) �1 (1.00) 0 (0.10) �1 (1.00) 0 (0.45) 1 (0.01) 0 (0.50) 0 (0.23) �1 (0.99) 0 (0.63) 0 (0.94) �1 (1.00) �1 (0.99) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

WSNR �1 (1.00) �1 (1.00) 0 (0.29) �1 (1.00) 0 (0.73) 0 (0.05) 0 (0.77) 0 (0.50) �1 (1.00) 0 (0.87) �1 (0.99) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

BIQI �1 (1.00) 0 (0.79) 1 (0.00) �1 (0.98) 1 (0.01) 1 (0.00) 1 (0.01) 1 (0.00) 0 (0.50) 1 (0.02) 0 (0.20) �1 (1.00) 0 (0.56) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

C4 �1 (1.00) �1 (1.00) 1 (0.04) �1 (1.00) 0 (0.32) 1 (0.00) 0 (0.37) 0 (0.13) �1 (0.98) 0 (0.50) 0 (0.91) �1 (1.00) �1 (0.99) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

Benoit �1 (1.00) �1 (0.96) 1 (0.00) �1 (1.00) 1 (0.04) 1 (0.00) 0 (0.06) 1 (0.01) 0 (0.80) 0 (0.09) 0 (0.50) �1 (1.00) 0 (0.85) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

Hewage 0 (0.83) 1 (0.02) 1 (0.00) 0 (0.17) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.50) 1 (0.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

You �1 (1.00) 0 (0.75) 1 (0.00) �1 (0.97) 1 (0.00) 1 (0.00) 1 (0.01) 1 (0.00) 0 (0.44) 1 (0.01) 0 (0.15) �1 (1.00) 0 (0.50) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00) �1 (1.00)

Gorley 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.50) 1 (0.01) 0 (0.41) 1 (0.00) 0 (0.88)

Shen 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) �1 (0.99) 0 (0.50) �1 (0.98) 0 (0.14) �1 (1.00)

Yang 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.59) 1 (0.02) 0 (0.50) 1 (0.00) 0 (0.91)

Zhu 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) �1 (1.00) 0 (0.86) �1 (1.00) 0 (0.50) �1 (1.00)

Akhter 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 1 (0.00) 0 (0.12) 1 (0.00) 0 (0.09) 1 (0.00) 0 (0.50)
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We have tried to cast this paper in the light of our own
evolving beliefs and incomplete understanding of the 3D QA
problem. We plan to continue studying the problem in
‘‘depth’’ and encourage the reader to join us in this venture.
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